The ubiquitin ligase Siah is a novel regulator of Zeb1 in breast cancer

نویسندگان

  • Anna Chen
  • Christina S.F. Wong
  • Mira C.P. Liu
  • Colin M. House
  • Jaclyn Sceneay
  • David D. Bowtell
  • Erik W. Thompson
  • Andreas Möller
چکیده

Elucidating the mechanisms that underlie metastasis is of paramount importance to understanding tumor progression and to the development of novel therapeutics. Epithelial to Mesenchymal Transition (EMT) plays a vital role in tumor cell dissemination and is regulated by a core cassette of transcription factors. Despite recent advances, the molecular pathways that regulate the EMT program have not yet been fully delineated. We show that Siah ubiquitin ligases regulate Zeb1 protein, a key EMT transcription factor. The induction of EMT in breast cancer cells leads to the down-regulation of Siah, while the loss of Siah induces a mesenchymal phenotype, concurrent with an up-regulation of Zeb1. Overexpression of Siah in vitro mediates Zeb1 degradation, which can be blocked with a Siah peptide inhibitor. Thus, this work demonstrates that Siah is a novel regulator of EMT. This work is the first to identify a mechanism of post-translational regulation of the key Epithelial to Mesenchymal Transition transcription factor Zeb1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siah Ubiquitin Ligases Modulate Nodal Signaling during Zebrafish Embryonic Development

Siah2 is a zebrafish homologue of mammalian Siah family. Siah acts as an E3 ubiquitin ligase that binds proteins destined for degradation. Extensive homology between siah and Drosophila Siah homologue (sina) suggests their important physiological roles during embryonic development. However, detailed functional studies of Siah in vertebrate development have not been carried out. Here we report t...

متن کامل

Zyxin is a critical regulator of the apoptotic HIPK2-p53 signaling axis.

HIPK2 activates the apoptotic arm of the DNA damage response by phosphorylating tumor suppressor p53 at serine 46. Unstressed cells keep HIPK2 levels low through targeted polyubiquitination and subsequent proteasomal degradation. Here we identify the LIM domain protein Zyxin as a novel regulator of the HIPK2-p53 signaling axis in response to DNA damage. Remarkably, depletion of endogenous Zyxin...

متن کامل

Siah proteins: novel drug targets in the Ras and hypoxia pathways.

The Siah (seven in absentia homolog) family of RING-domain proteins are components of ubiquitin ligase complexes, targeting proteins for proteasomal degradation. Siah family members have been reported to function in Ras, estrogen, DNA-damage, and hypoxia response pathways. Although earlier reports implicated Siah proteins as tumor suppressors, recent studies in mouse models have shown that Siah...

متن کامل

Distinct expression patterns of the E3 ligase SIAH-1 and its partner Kid/KIF22 in normal tissues and in the breast tumoral processes

SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast ...

متن کامل

Tumor and Stem Cell Biology Zyxin Is a Critical Regulator of the Apoptotic HIPK2-p53 Signaling Axis

HIPK2 activates the apoptotic arm of the DNA damage response by phosphorylating tumor suppressor p53 at serine 46. Unstressed cells keep HIPK2 levels low through targeted polyubiquitination and subsequent proteasomal degradation. Here we identify the LIM domain protein Zyxin as a novel regulator of the HIPK2-p53 signaling axis in response to DNA damage. Remarkably, depletion of endogenous Zyxin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015